
"l

OSI UK User Group Newsletter
. . Vol.1 No.2 March 1980

(:

;::;

"a"'
t

, . J - ... R ~

.. ·-- .. -~~ ! ~
'-

. R-, ~

(:

"'
~
✓

· _. Documentation D BASIC storage formats D User Group notes
Superboard display conversion o and much other information

·~

Editorial

Welcome back! This second issue of the User Group Newsletter finds the Group
expanding every bit as rapidly as we had hoped , and with some superb articles and
smaller pieces coming in from members - the article on modifying the display
of the Superboard being the most important one this issue. What are you doing with
your kit? Let us know - to help everyone who uses OSI equipment.

User Group matters
We're finding that deal ers as well as users want to know about User Group member
ship - partly as part of their technical back -up , partly because many are willing to
offer special deals to member s. One dealer has asked us to issue member ship
numbers , so that he can offer software at a reduced rate to members; and another
is offering a superb deal on a matrix printer - see the User Group Notes at the end
of this issue. But you have to be a member first ... Membership is £5.00 per year,
mainly to cover th e cost of production and distribution of this quarterl y Newsletter ;
cheques should made payable to OSI UK User Group and sent to the Group 's
London addre ss, 12 Bennerley Road, London SW11 6DS. Tell us which issue you
want your member ship / subscription to start from; and give us at least two weeks to
turn subscription s and letters round, as we ' re only doing this in whatever 'spare'
time we can invent! Technical queries and the like should also be sent to George
Chkiantz and Richard Elen at the London address.

Next issue
This depends on you! We ' ll be continuing the Aardvark BASIC series with a descrip
tion of the main BASIC program proce ssing loop ; but we 've little else definite yet.
So send in articles , tapes or listing s; let us know what you're doing. These should
be sent to me (Tom Grave s) at 19a West End, Street , Somer set BA160LQ , and should
arrive here by mid -May to be in time for the next issue, which will be issued in mid
)une.

Documentation corner

As you're no doubt only too well aware, OSl's attention to detail in its documen
tation for its BASIC-in-ROM machines leaves much to be desired . As information
comes in we ' ll publish it in this 'corner', as a regular column.

CLEARiy in error
Richard Elen writes : Have you ever noticed that our good old under-described
OSI/ Microsoft BASIC has some features that are not discussed in any depth in the
BASIC Manual supplied with the gear? Sometimes things aren't even mentioned .

One such feature is commonly available on other people's BASICs but never a
word is spoken about it in OSl's documentation, other than a mention in the list of
available commands on the back page. This is the CLEAR function.

If you've ever run out of memory with a load of strings or arrays, or succeeded in
returning the dreaded 'B-Splurge Error' halfway through your fiendishly compli
cated data-handling program which uses all the names for strings known to Man
and a few more, you might have wondered about this one. Other people's BASICS
often utilise the CLEAR instruction to reserve string (or sometimes array) space in
memory for BASIC use. For example, on some machines , the instruction CLEAR 4500

"'

j

.. ,}

'-J

r

(

~

,,---,

will allocate a nice wodge of memory to strings (one presumes 4500 bytes in this
case, but of course you can write CLEAR n, where n is a suitable amount of memory) .
We don't appear, at first sight, to have such a useful command available on our
machines.

But wait a moment. It is true that if you type:
10 CLEAR 5000

in your program, it will promptly return a SN ERROR, and similarly, attempts to
enter shorthand forms, as on some BASIC variants, like CLR 3000 or whatever, you'll
get the same response. But now try this:

10 CLEAR
- just the simple command, CLEAR, no following digits or anything. This will
produce an ominous nothing from your machine, no SN ERROR, no B-Splurge
message, no nothing. In other words, the machine has accepted it. In fact the list of
tokens (pairs of hex digits which are stored in a look-up table which the machine
uses to compress BASIC keywords into 1-byte mnemonics for its own use) includes
one for CLEAR. The comma nd , therefore , definitely exists; the machine accepts it
and knows what to do with it . But days of poring over a disassembled listing of OSI
BASIC still leaves me unenlightened . How is this CLEAR instruction designed to be
used? Does it allocate some string and / or array space? How much? Is it a fixed
amount of memory or is it automatically set by, say, the size of available RAM? Can
/OU in fact add something to the CLEAR instruction to clear a space for a specific
string like maybe CLEAR A$ or CLEAR A(500)? Does it reset the variables? Trouble is,
I simply don't know. Do you?

Editor : I spent a fair amount of time chasing this after Richard brought it to my
attention. CLEAR does reset all variables, strings and array dimensions : variables
return to O, strings are returned to LEN 0, and arrays, if called are returned to the
undimensioned default limit of 10. What I haven't yet had time to check is whether
after calling CLEAR, a DD ERROR (double dimension , not Double Diamond!) arises
on re-dimensioning any array. It seems that CLEAR is intended to be used rather in
the same manner as RESTORE; but it seems a little extreme in that it clears every
thing. CLEAR A producesa SN ERROR, as does CLEAR A$; and it doesn 't seem to
allocate any special space to strings, although there is a comment in the ' manual'

., that strings are limited to 255 bytes, which may do away with any need for that
function for CLEAR.

In passing, I seem to have discovered the meaning of 't he dreaded B-Splurge
Error'. It arises if you call a subscript outside the dimensioned limits for the array : in
other words if A(X) is undimensioned, it defaults to 10, so calling A(12) will produce
that 'B-Splurge Error' statement. The 8-Splurge appears in the ROM listing (in the
usual garbled form) as BS- but what the letter s are supposed to stand for I haven't a
clue! The ROM listing shows 17 error codes, as does the list in the manual; the one
that appears to be missing (so to speak) is the OS (out of string space) error, which is
made redundant by a combination of OM (out of memory), BS and the automatic
limiting of the length of strings.

ON X ... GOSUB
Like CLEAR, ON X ... GOSUB is included in the list on the back of the manual. It

, certainly does exist: I used it as the key part of my Tune Chaser program. It is
identical to ON X ... GOTO, but calls subroutines rather than jumping to one of the

'·' given sequence of line numbers.

"I

'

SGN(X)
Another bloomer on OSI 's part , this one. The manual claims that SGN(X) returns 0 if
X <= 0 rather than (as with most BASICs) 0 if X = 0 and -1 if X< 0. OSl's documentation
is wrong:

SGN(X) is 1 if X is greater than 0
SGN(X) is 0 if X equals 0
SGN(X) is -1 if X is less than 0

USR(X)
We dealt with USR(X) in some detail in the last issue, but there is one more point
worth making . That is that AEOS, the I NVAR routine, transfers the processed value of
(X) into AE, AF as a fifteen -bit signed integer (not a sixteen bit number) into those
locations, and with the number laid out as a double -byte number (high byte first)
rather than as a two-byte address (low byte first) . If you want to use USR(X) to pick up
an address via Af0 5, you have to trick it somewhat if you want to give it an address
higher than 7FFF16 - which you will do if you want to place something on the screen
using a STA ($AE), Y machine-code routine . You ' ll also need to swap th e two bytes
round, to make them address-format rather than number-format. A sequence I've
used is JSR AE0S, LDY 0, LDX $AF, LOA $AE, ORA 8016 , STA $AF, STX $AE, LDA (what
ever), STA ($AE),Y, RTS. The screen addresses (for a C2) become 2048010 to 2252810 (or
to 2240010 to the text base-line) if you want to use the routine to put something on
the screen. If you don't do this , Af05 tries to make out that the screen addresses are
really -20480 to -22528 (because it treats the top-most bit as a minus-sign rather than
as part of an address) and, not surprising ly, screws up the whole system, ending with
an FC ERROR statement. Using this routine is only minutely faster than POKE,
incidentally, because of the laborious sequence that AEOS goes through to process
the value of (X); can anyone work out a quicker way of tr;lnsferri ng selected screen
values?

USR buffs might like to know that there is an effec tive 'spare ' ¾K of memory out
side of the program space, so that memory doe s not have to be al located for shortish
machine-code routin es through either the 'officia l' method of answering
'MEMORY SIZE' with a lower-than-total-memory figure , or the mc,re practical one
of POKEing 13310 and 13410 with the low and high parts of your' new ' top of memory .
(If you pla ce a machine -code routine up the top of memory, but don't reserve space
for it , BASIC will overwrite it with the first string it has to store from your program .)
The ' spare ' space runs from 024016 to around 02F016 or later (the top may be used by
some rarely-used BASIC pointers, as far as I can tell) ; if you use 024016 the start
POKEs for the USR routine are POKE 11, 64: POKE 12, 2. Beware, though - some
utility programs , such as Sirius Cybernetics' C2 Screen Editor , use this space while
they are running; so don 't try to run your USR routine when you are running that
program co-resident with it , or the editor (or whatever) will be thoroughly
scr~,, ,t>led !

Re..:overy from accidental Cold-start
Recovery from coldstart is possible if you answer "MEMORY SIZE?" with a number
instead of < RET>. (Once you hit RETURN, BASIC fills the memory with test bytes
until it doesn't get them back to see how much memory there is. That means your
program is completely and irrevocably overwritten .) The easiest way is to go into
the ROM monitor before you coldstart and find and copy the contents of locatiom
007B, 7C and 0301, 02. Then coldstart, entering your memory size (i.e . 4096 for a 4K

"'' L_ __ ---------

r,

,, I

A

.(

-;,,

' ,

machine, etc.) and after BASIC comes up, go back to the monitor and replace 78, 7C
(th e end of program/beginning of variables pointer) and 0301, 02 (the pointer from
the first BASIC statement to the second, which will be set to zeros by coldstarting
though the rest of the program is still there) . If you have already coldstarted, look
for the first zero byte after loc 0305, and put an address one higher than that zero in
0301, 02 (low order byte first; the contents of 0302 will be 03 always, unless you have
hand-manufactured a very unusual BASIC program). The program will now list , but
will wipe itself out if you try to run it. (Variables will overwrite the beginning of the
program .) List the program, immediately use the monitor to find the contents of
OOAA, AB and put those contents into 7B, 7C. Everything should then be back to
normal. (In fact, immediately after listing any line, locations AA , AB will contain the
address of the pointer of the next BASIC statement - or of the beginning of
variable space if the last line of the program is listed .)

Machine-code and BASIC
Another of the 'missing' sections of the firmware in Cls and C2s is any machine
code SAVE routine . In the next issue we'll have one of the many machine-code
routin es that users have develop ed to do the job; for now we have a BASIC version
from Aardvark (who also gave us the co ld -start recovery sequence and the routine
to load machine-code with a BASIC tape). They claim it SAVEs machine-code very
nearly as fast as a machine-language routine; but ther e may be timing problems, as
users of this routine have told us that it is a little erratic, getting out of phase after
around 150-200 bytes! Try it, anyway ; it's better than the nothing that OSI supply for
free with their machines ...

10 SAVE: POKE 15,255
20 A1= (fill in start address, decimal)
30 A2= (fill in end address, decimal)
40 ACIA=64512 (61440 for 1P's)
50 ?11.HHHH/"; (HHHH is start addr in hex)
60 FOR A= A 1 TO A2
70 D=PEEK(A)
80 H=INT(D / 16)
90 L=D-16*H

100 IF H>9 THEN H= H+ 7
110 IF L> 9 THEN L= L+7
120 ?CHR$(H+ 48) CHR$(L+ 48);
130 WAIT ACIA,2
140 POKE ACIA + 1,13
150 NEXT
160 ?".FEOOG"

If you would like to be able to LOAD a BASIC tape and then have it automatically
continue and load a machine language tape with the monitor, here is one way to
prepare a tape that does that: Type: SAVE < RET> LIST (turn recorder on) < RET>
(stop tape when done) ?"POKE 251,1: POKE 11,67: POKE 12,254: X=USR(X) (restart
recorder) <RET> (stop tape when done). Now put the machine language you want

, on the tape. When you LOAD the tape, it wi-11 load the BASIC program, switch to
monitor mode (without clearing the screen) and load the last part of the tape .

~
• °I"'.

r

Disc system notes

One thing whi ch wor ried us about the last issue was that all the information we had
was for BASIC-in -ROM machin es. Admittedly these are the most common ones, but
we do have memb ers with larger system s - we want to give you as much
information as we can too l Just befor e thi s issue went to press we were able to
collect the following , th e fir st o f wh at we hope will be, to quote our correspondent
who supplied the inform ati on, 'a con tinu ing series of hint s, fi xes and information
from our spy in OSI' .

Date print-out and the real-time clock
OSI equipment runnin g O S-65U has th ree loca ti o ns assigned for the date. These
are:

Day
Month
Year

lev el I addr ess
24569
24570
24571

level 111 address
55922
55923
55924

OS-65U Level 111 has access to a real-time clock at the locations specified and hence
w ill not need anything to be added to BEXEC•. For level I the following routine
should be added to BEXEC* so as to obtain the date on boot-up and access it for
pr inting later .

220 REM Routin e to get date
221 REM
222 ?:INPUT .'Please enter th e date in th e fo llowin g form at - Day, Month , Year" ;
DA$,MO$,YR$:?:?
223 DA =VAL(DA$) : MO = VAl(MO$): YR = VAl(YR$)
224 IFDA < 1 OR DA > 31 OR MO < l OR MO > 12 GOTO 228
225 IF YR< 1980 OR YR<> INT(YR) OR DA <> INT(DA) OR MO <> INT(MO)
GOTO 228
226 POKE 24569,DA: POKE 24570,MO: POKE 24571, YR: GOTO 229
228 ?"Please use integer (whole number) values for the day, month and year" :
GOTO 222
229 REM

"''

To retrieve the date in the form OT$ arranged as DD / MM / YY use the following
routine under level I :

A =24569 : DT$=RIGHT$(STR$(PEEK(A) + 100),2) +"!"
DT$=DT$ + RIGHT$(STR$(PEEK(A + 1) + 100),2) + " / "
OT$= OT$+ RIGHT$(STR$(PEEK(A + 2) + 100),2}

Memory access problems: Z-80 and the 520 board
If you're having problems with running the 510 board 's Z-80 with certain 520
memory boards, the problem is due to the way that the memories require some set
up time between accesses. The original circuitry could access memory (i.e . the
R/ W line could change from Read to Write) as the chips were be ing enabled . The
modifications to the 510 board described below prevent the devices from being
enabled until the R/ W transition has occurred .

a) Isolate U34 pin 2 (a 7410)
b) Connect a jumper from U31 pin 8 to U34 pin 2.

l ,,,..~...,..._...,..,,.,,W$ii11Wf?i"'""'7"'"-"'~.,..,.-- · -

·f
-· i1-

,, .. ~;.
,;f

~I

C I

.t.:'

'

c) Connect a jumper fr_om the Z-80 pin 22 to U34 pin 10.
d) Connect a jumper from the Z-80 pin 21 to U34 pin 9.

Boot problems with hard disc systems under OS-65U Vl.2
If you find that 65U V1.2 (N MH z) exhib its the following problem the solution below
should fix it! Our correspond ent doesn't know what it does but the results are good!
The problem comes with CD-23 systems (23 Mbyte hard disc) - the floppy disk
version of 65U V1.2 won 't boo t if th e CD-23 is powered up. The hard disk version
won 't boot at all.

Solution: Run " changen, Hpass"
Select Hex mod e, un it A, address offse t - 2AFD (-2 800 for Hard Disk)

Select addr ess 302E
0000302E 3E? 40
0000302F 4 34? /
00003030 C 63 ? 7B
00003031 4 34 ? /
00003032 EF ? 01
00003033 5 35 ? 36
00003034 C 43 ? 4A
00003035 7 37? X

OK

Input, screen-'print' and graphics for games and the like

As promised in the last issue, we'll devote this section to a number of matters that
relate to input to and from the screen , for games and other uses. Many of these
notes com e from Aardvark 's BASIC Notes and their software catalogue - thank s!

Screen clear
Another OSI oversight , especia lly as there is a perfectl y good screen clear ro utin e
jumbled up unu sably in the m idst of ROM mo nito r cod e. The 'offi cia l' solution is a
clumsy and inelegant FOR X= 1 TO 30: PRINT: NEXT X or t he ago nisingly slow
'POKE the whol e screen wi th blanks'. There are several goo d machine code
routines , but th ese are a litt le tric ky for begi nners (I' ll get rou nd to including one
machine-code screen-clear ro utin e o ne of th ese issues!). But Aardvark included in
their BASIC Not es a bi zarre screen-clear subrout in e wh ich w orks by f iddling BASIC
pointers and is absurdly fast, even t hough it do es in fact scroll the screen .

10 A=PEEK(129): B= PEEK(130)
20 POKE 129,255: POKE 130,215
30 A$=" (65 blank s)

"
40 FOR 1=1 TO 32: A$=A$+"" : NEXT

\ so POKE 129,A : POKE 130,B

.. One alteration is necessary if this is to be used as a subroutine with th.ree-digit line
numbers. There simply isn't room within the input limit of 72 characters to get a long
line number , the string label, equals, quotes and 65 blanks all in together . The

,,-

)
!l

f/f,'

simplest way out of this is to split the '65 blanks' into two parts: A$ =" (40 blanks)"
(new line and line number) AA$ = " (25 blanks)": A$ = A$+AA$- leaving A$ as a
string of 65 blanks. Because this scrolls the screen , the screen area below the text
base-line is untouched; so that still has to be cleared with FOR X = 55167 TO 55295:
POKE X, 32: NEXT X before the screen really is cleared. But the total time, even on a
1 MHz C2 (as for the addresses above) is well under one second - a significant
improvement!

Input: simple USR routines
Aardvark comment: everyone has times they want to input something without
scrolling the screen. We usually use PEEKs of the keyboard - and still have to do so
to run in real time. However , if you are doing a stop and wait for input, use this
routine: POKE 11, 0: POKE 12, 253: X= USR(X): P$= CHR$(PEEK(531)). That will
input one letter . If you want a number then P = PEEK(531). If you want a word or
sentence, add up the PEEKs with A$ = A$+P$. By using the ' PRINT AT' routine
below, you can print the input to anywhere on the screen and seem to input at any
location.

Editor: The USR routine calls the monitor 's keyboard routine at FD0016, which
waits until a key is pressed and returns its ASCII value , parking it at 53110 in the
process. The trouble with this way of handling input is that if the user hits the wrong
kind of key - particularly an alphabetic key when the program expects a number -
the program will crash with a TM (type mismatch) error. A way round this is to limit
the possibilities by treating everything co ming in in this way as an ASCII value rather
than as a letter or number , and limiting the range with IF ... THEN statements. The
monitor's routine returns with the value in the A register; the USR OUTVAR routine
expects the low half of a sixteen-bit value in Y, with the high half in A; so a simple
swap-around before calling AFC116 returns the ASCII value of the key pressed to, for
example, the variable Pin P= USR(X). Don 't use P$ without the CHR$ function - it
will crash, since ASCII is numbers, not letters! To get a number, use P= USR(X)-48; a
simple greater -than / less-than check limits the range of numbers , and allows the
user to blunder through the entire keyboard (other than that be-wretched BREAK
key!) without any adverse effect. The routine is relocatable without any change,
since it refers only to ROM or BASIC-pointer addresses; in decimal, the sequence is
32, 235, 255, 168, 169, 0, 32, 193, 175, 96.

Input: automatic key-scan
Aardvark point out that, for many one-player games, there is no need to scan the
keyboard, since the (combined) value of the current control key(s) p~essed are
stored at 5710010, or rather, by a rather slap-dash bit of wiring , at every fourth
location from 5710010 to 5722010 • There is thus no need to go through the somewhat
messy procedure of disabling CTRL-C and the rest of that routine as described in the
OSI Character Graphics handbook - although the PEEKs of the chosen location are
still rteeded, of course. The only catch is that, since the SHIFT-LOCK is normally
Jown during BASIC operation, its value of 1 will be added to the total picked up by
PEEKing that location - the PEEK is thus likely to return a value one higher than you
expect!

PRINT without scroll
The lack of a PRINT AT statement is one of the more irritating parts of OS l's BASIC;
this is one of the ways round it, and others are below. The trick here is to convince
the PRINT routine that, since the base-line of the screen is never completed, there is

"!(-,
,,

~{ ..,

~
;i
'

~:::~'

/

never any need to scroll the screen. CHR$(13) gives an equivalent of carriage-return
, on a print-terminal, returning the cursor to the start of the base-line; using a; stops

the PRINT routine from inserting a line-feed and scroll. Thus a statement of the
type:

PRINT CHR$(13)"This prints without scrolling";
will do just what it says. Note that this overwrites the base-line only as far as the string
to be PRI NTed is long ; you may need to insert a few blanks at the end of the string in
order to wipe off a longer previous stateme nt . Don 't let the overall length exceed 63
characters, though , or else the routine will automatically insert a carriage-return/
line-feed - which rather defeats the object of the exercise.

PRINT AT X, Y
Again, the lack of PET- lik e cursor -addressing is another of the annoying limitations
of OSl's BASIC, both for games work and, in my case, for screen editing. Using the X
horizontal and Y-vertical notation, the point D can be expressed in several ways on
C1s and C2s. If 0, 0 is top - left, for both C1s (in theory) and C2s

D = 53248+X +64*Y
- I say 'in theory' for C1s because of the varying cut -off because of overscan on the
video display . Defining 0, O anywhere for a C1 is thus a little tricky, and can only be
determined for your own machine by trial and error. For C2s 0, 0 can also be placed
at bottom left by changing the statement to:

D=55232+X-64*Y
(By the way, Y should be multiplied by 32 on C1s, not 64!) Remember to check that
X< 64 (32 on C1s) and Y< 32, or else the statement will produce some unexpected
addresses.

PRINT AT
Again from Aardvark , a short statement to print a string D$ on the screen starting at
an address D - as defined by the routine above, for example.

FOR Y= 1 TO LEN(D$): POKE D + Y, ASC(MID$(D$,Y,1)): NEXT: RETURN
Scores have to be done in a slightly different way, partly because BASIC include.
the sign (or the absence of one, with a positive number) as the first 'digit' in the
string, and partly because the string routin e above makes no allowance for increas
ing or decreasing numbers of digits. There are a number of ways of dealing with this,
but most need a definite limit for the number of digits to work well - we've used
five as the limit in the examp les below . Convert the score to a stri ng with the STR$
function. Then , if you want a simp le counter for up to five digits, blank out the
leading spaces a FOR:NEXT loop .

D$=STR$(score) : FOR X= 1 TO 5- LEN(D$): POKE D+X, 32: NEXT
FOR Y= X TO X+LEN(D$): POKE D+Y, ASC(MID$(D$,Y,1)): NEXT: RETURN

The position of the low est digit will stay the same with this routine, as opposed to
the highest with the simple string version . If you want to print leading zeroes,
change the POKE in the upper line to POKE D+X, 48 rather than 32.

Suggested alterations to Aardvark games

-~ · J. B. W. Harkness writes: As a recent rec·ruit, I've only just received my copy of the
Newsletter. I though I'd write with my impressions of two games I bought with my
C2-4P.

~

ff'

I

'I'
iii

I

I
111

I
'\1

I
:i
!1
;:
I'

' "''

Fighter Pilot My opinion is much as yours, except that within half an hour or so my
seven-year-old son had discovered that firing when the target was on the same line
as the centre spot of the sight resulted in a hit. (It could be at either end of the line , it
didn't matter.) It was cured by changing line 490:
490 IF ABS(IP-AP)< 3 OR (IP+ 64-AP) < 3 OR ABS(IP-64-AP) < 3 THEN 530

Tank For Two This sets up a sort of obstacle course/maze in which two tanks are
manoeuvred to shoot at each other. The missiles can be steered in flight and can also
be launched from the side .of the tank as well as the centre . Twenty hits decides the
winner. It's quite an entertaining game except that it also has a fault in it. The
initialization routine doesn't put in a left-hand margin , with the result that a tank can
disappear off the left hand side , never to be seen again . The cur e for this is to change
line 220:
220 FOR X= 1 TO 32: POKE C1 +X* L, B: POKE(C1-31) + X*L , B: NEXT

I hope these can help others to enjoy these games.

Storage in BASIC: programs, variables and strings
Courtesy of Aardvark Technical Services

(Editor : The storage formats described in this article apply generally to most Micro
soft BASICs, but the specific addresses and the like given here relate to the BASIC
in-ROM used on the C1/ Superboard and C2 series machines , and also, in a slightly
modified form, on the UK101.)

Your BASIC programs are stored, line by line, in a partially pre-digested form
starting (normally) at memory location 030116 • All BASIC keywords (FOR, GOTO,
END,=, CHR$, etc.) are stored as one-byte 'tokens'. Tokens always have the highest
bit set (i.e. they are always higher than 12810). Other parts of your BASIC statements
(like AA and 123 in LET AA=123) are stored as the ASCII characters you typed in. The
line number is stored as a two-byte straight binary number (but that does not
explain why the highest allowed line number is 63999 instead of 65535!). In addition
to these, each stored line of BASIC source contains a two-byte pointer containing
the start address of the next BASIC line. This lets BASIC search rapidly for a given line
number. The format of BASIC statement storage is always like this:

null pointer to
next line

line no. BASIC code - tokens and ASCII null of
next line

(That information alone is enough to let you write a renumbering program for
BASIC programs.)

The 'normally starting at 030116' pointer can provide interesting possibilities.
'BASIC workspace' - the area in memory where your program and variables are
stored - begins at whatever address is contained in locations 007916 , 007 A 16 •

Machine addresses are normally stored low byte/high byte. Thus, when the cold
start routine initializes these locations, it puts 01 in 0079 and 03 in 007 A. Now, if you
change this, with your trusty ROM monitor or with POKE statements, you can make
BASIC store your programs anywhere you choose . In fact, you could have one

'(

(1

program stored starting at 030116 , another at 090116 , and another ... all using th e
same line numbers, if you w-ant! BASIC will only f ind one at a time for running and
listing - the one whose beginnin g is contained in 79, 7 A.

Note: the byte immediately befor e the first line must be the initial null. Normally ,
the system puts a permanent O in location 030016 dur ing the cold-start , and the first
byte of the first pointer goes in 030116 • You must put t he initial null in (at 090016 in the
examp le above) or nothing work s.

After you change 79, 7A and put in that init ial zero, type NEW, to get BASIC to
reset some other point ers for yo u. Unfortun ately, if you put one program one place ,
reset only 79, 7A and put another program somewhere else, tryi ng to edit the fir st
one will blow up th e second program and not work in th e fi rst. You can, however ,
switch back and forth if all you do is RUN and LIST the prog rams. Howe ver, if you
also replace 7B, 7C, programs are editable and can RUN happily.

Another not e: either avoid pro grams with lots of variables that can wipe out other
programs , or else also updat e 85w 8616 to indicate tha t the top of memory is just
below the next pro gram up. The hard one to fix is 78, 7C. It points to variable work
space - so BASIC POKE statemen ts using variables can't fix it: the variables are lost
between t he first and second POKEs!

BASIC variable storage
BASIC also needs space to store var iab les. These are sto red in memory above the
program - numeric variables , preceded by their names, from the end of memor y
going up; and string variables from the top of memory going down, their names
being kept in a table along with where in memory the strings are actually stored .
Two data areas are kept (with name tables) - one for arrays (string and numer ic),
the other for single variab les (string or not) and functions. Since only seven bits are
needed for each character of the variable 's name, th e highe st bits are used to show
what type of variable is stored. A 1 in the top bit of the second character indicates a
stri ng ; a 1 in the same bit of the fir st characte r indicates a function (in, e.g. DEF
FNAB(X)). If heither top bit is set high the variable Is numeri c, while both top bit s
high ind icates a string function (FNAB$) - although the system doe s not supp ort
the latter.

Single variables are stored immediately following the program, start ing at th e
address point ed at by 78, 7C on page-zero . (The abbrev iat ion (78, 7C) is used to
indicate the cont ents of 78, 7C. Thu s, th e sing le variables start at (78, 7C).) Each
variable is stored in a fixed - length six-by te block in this area:

function

\ numeric
. variable

function
name

(ASCII)
L_

this bit set if fun ction

variable
name

(ASCII)

loc . of first
char. after =

in DEF statement

locatio n of
dum my variab le

floating point value

I

II
l

string
variitble

variable
name

(ASCII)

L---
th is bit is set

length

to indicate a string

location
of string 00

To find a variable, BASIC searches the names, starting at (78, 7C), skipping to the
next name six bytes later each time until a match is found. If a string is being
searched for, the actual string is not here , but stored starting at the address
contained in the fourth and fifth bytes of the entry in the tabl e. The search ends if a
match is not found by the end of the area, (7D, 7E).

Arrays are stored in assorted length blocks from (7D, 7E) to (7F, 80) as follows:

numeric 1

arrays

string
arrays

variable
name

L-

number of
subscripts

-- L I I

length of
this block

size of last
subscript

this bit set

element
0,0, . . . ,0

size of next
t~-last subscript I element

1,0, . .. ,0
I

etc.

loc. of e lement

O,O, · · · ,O loc. of element
1,0, .. . ,0 etc.

To find an array element, BASIC starts at (7D, 7E) and looks at the name , then skips
to the name in the next blo ck (that's why we have that third byte!), and the next
block , and the next ... until a match is found, then skips four bytes per element until
it finds the element it wants. If it's a string, we have the length and location stored
here, not the actual string, as before . This table is finished by (7F, 80).

Strings are actually stored starting at the top of memory , this being indicated by
(85, 8616). Modifying the contents of 8516 and 8616 (or having answered a number
less than the actual memory size to the MEMORY SIZE? request at cold-start) will
keep the strings from wiping out any other programs or data you may want to tuck
safely away at the top of RAM . BASIC uses this space at the top of the memory with
no regard for saving space or re-using space until it runs out of free space. It keeps a
pointer to the next free space (working from top to bottom) in (81, 82), putting any
strings it needs there, whether array or not, and updating the pointer until it runs
out ohoom - in other words, when (81, 82) equals (7F, 80). To keep from wiping out
the array tables - the first thing it would run into - BASIC calls a 'garbage
collection' routine that tries to shuffle the strings around back up to the top of
memory and thus reclaim unused space. Unfortunately , there seems to be a bug in
the garbage collection routine that makes it hang up if it has to try to relocate string
arrays. Unless you try to do some fancy string array manipulations in big loops, you
probably won't run into trouble - it seems to affect arrays of more than around
twenty elements. In case you want to go bug-hunting , the FRE(X) routine at AFAD, 6

calls the garbage collector before finding out how much room is left between (81,
82) and (7F, 80).

"''

~;
,1
r

)

J

I
/.

Representation of numeric variables
The floating point value of a numeric variable is stored in its four bytes in normal
ized binary exponential (scientific) notation :

exponent sign
sign and
most significant bit

,j,

least significant bit
/ ~

10000011
'---v--"

exponent

.00100000 00000000 00000000 ..
binary point

This would be read as: .1012X2, 03= 5,0

The last thr ee bytes conta in the number, to 24 bits ' accuracy; the first byte is the
power of 2 - if you like, the number of places to move the binary point. The binary
point is like the decimal point, except to its right we have the ½'s column, ¼'s
column, 1/8's column , etc. , instead of 1/,0's, 1/100's, etc .

The most -sign ificant -bit of the value (bit 7 - the topmost bit - of the second
byte) is always interpreted as having the value 1. If it were 0, we could shift the
number to the left - binary point to the right - until it was 1 increasing the
exponent by as many places as we moved. Since this is under stood to be so by the
system, we can use that actual bit in memory as the sign bit: a 1 in that bit is negative.
Negative numbers are not represented in two's-complement form; the exponent ,
however, is. Some examples:

5 10000011 00100000
1 10000001 00000000
2 10000010 00000000
3 10000010 01000000
4 10000011 00000000
7 10000011 01100000
15 10000100 01110000
-5 10000011 10100000
.375 (%) 01111111 01000000
0 00000000 00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

If you want to exp lor e this further , there follows a short BASIC program to read the
binary representation of a number from memory . It look s at the second , third and
fourth bytes after (7B, 7C). Killing line 30 lets you look at the variable name (and the
first two byte s of the value) .

10 INPUT M
20 P= PEEK(123)+ 256*PEEK(124)
30 P= P+ 2
40 FORJ = 0TO3
SO N = PEEK(P+ J)
60 GOSUB 200
70 PRINT " ";
80 NEXT
90 PRINT

100 GOTO 10
200 FOR A = 0 TO 7

·-·.......,,.

r
,r

:~'

11:
,· 1

l

210 B= N AND 2A (7-A)
220 IF B THEN PRINT "1" ;: GOTO 240
230 PRINT "0" ;
240 NEXT
250 RETURN

(Yes, lines 210 and 220 are corre ct.)

The program waits fo r you to input a number , then prints the binary representation
of it, and then loops round to wait for another number .

Larger display for Cl/Superboard series

Almost the only poor part of the design of the C1/ Superboard series is its meagre
video display - 32 X 32 if you ' re lucky , more likely 25 X 25 because of overscan on
any TV used for the display . A modification we've recently heard of alters the video
circuitry to produce 'guard bands ' to get round overscan on the standard di splay
it 's to be market.ed over here , and we'll publish details when we have them . But the
mod shown here tackles the problem in a different way, simply doubling the screen
memory and using a software 'patch' to inform the video circuitry and BASIC print
routine that the extra memory is there. This mod is a much-tidied-up variantofon e
that was published some time ago in the States - we haven 't found out wh o by,
though. Anyway, on with the article!

If on ly OSI had not skimp ed quit e so mu ch on th e d isplay drive r sectio n of the
Superboard the machin e would be amazing valu e instead of mere ly exceptional.
This article describe s a method of extend ing th e forma t to 64 characters by 30 lines,
which - allowin g for over scan - will give a usabl e 50 charac ter by 30 line display.

Although the system monitor is accessed by BASIC to determi ne the screen size
continually , giving a peculiar output when LISTing program s, a soft ware 'patch' can
be implemented to allow use of the full screen area under mo nitor cont rol.

The software patch need not be used, however, when the screen is accessed via
POKE (or in machine code routines) as this function does not access the monito r's
screen-size look-up table .

The modification requires few components (under £20 in total) but will require a fair
degree of competence in Soldering, and at least three hours ' work. For those people
who have some doubts about their capabilities all that can be said is that the
modifications are reversible, and an unskilled person has carried them through
from these instructions with complete success.

Components required are: one 8MHz crystal; two 2114L3 (possibly more, if 2MHz
operation is required and any existing devices are not up to it!); one 74LS139; one
74LS161/ 3; two 16-pin IC sockets for the 74LS chips; and the usual assortment of
wire , solder and the like .

Exchange the 4MHz crystal on the Superboard for the new 8 MHz device, and check
that everything still operates. This has doubled the master clock of the machine, so
that everything will run at twice the original speed - including the processor and
the cassette interface. Run a memory test on both the user RAM and video RAM,

""

~

checking every bit in these · areas - a slow process but it saves later difficulti es and
probably the cost of two 2114L3s. [We gave a simple BASIC memory test in th e last
issue, in the section on doubling the operating speed of a C2 - Ed.] On early
machines slower RAM was used in the screen memory, and sometimes in the main
user area. If any failures are found, take the following action:
a) If the machine is required to operate at 2MHz weed out the failing devices and
sell them to a less demanding acquaintance! By enough devices to restore your user
workspace plus four for the new video RAM.
b) If 2MHz operation is not required, try to find at least four fast devices for the new
video RAM and replace the user workspace with four new 2114s (550ns minimum
speed). Restore the processor clock to 1 MHz operation by cutting the track to U8
pin 37 (00 in) (component side) next to U8; then connect U8 pin 37 to U30 pin 12

Having done either a) orb), test the other conversion parts required by substitution
in the machine, and start modifying . Note that the following abbreviations are used
throughout, to save boring repetition :
(ts) - track side of board, i.e. the underside of the board.
(cs) - component side of board .
Vee - any SV point on the board.
Gnd - any 0V point on the board .
(U99 pin 21) means 'the track that used to connect to U99 pin 21 before that track was
cut'.
PTH - plated through hole.

Conversion
The video memory is normally arranged as a 1K block occupying locations from
D00016 to D3FF16 and is accessed by the video display circuitry via an address
multiplexor. When the CPU writes new data into the video RAM, control of the
video address lines is given to the system address lines by the multiplexor.

In-order to allow the increased video RAM to be accessed by the system address
bus the multiplexor control signals must be modified.

0

! • 0 o,

VlO ,,
0

i
• o-----

11 I
o,11 I

'1•

,,.01
?•

t
ehu ✓Z27//FL__

~ l >u,

Fig. 1
Drill out PTH A and connect the (ts) track to U20 pin 14.
Isolate U20 pin 11 (1 cut).
Isolate U20 pin 1 and connect pin 1 to Vee (1 cut) .
Connect (U20 pin 11) to U20 pin 10.

,,

,!
I
1:

fl

w

ti

I

I
I
i
I
\i

I

!II!!

II!
1 J
'' I I
I'
I'
I

I I

L "''

~
) p1<, /1) l ..

Fig. 2
Drill out PTH B.

I

rfr

0
0
0
0
0
0
0
0

oJ O . .. ~ i 01'

-E-PrM 1f 1

i

Connect U56 pin 1 to U56 pin 2.

Fig. 3

LJI
W1 H~u,

~
c. .. ,

Drill out PTH C and PTH D.

Fig. 4·

IC,,.,..,. •c'

\J('<,

v-n

(.So

~
F .. p)
(.',

Solder two 16 pin IC sockets into the prototyping areas at U26 and U27, observing
the same orientation, and connect V ee and Gnd to pins 16 and 8 of these sockets
respectively.

<l ~, ..

__./ ::C< Z ;,;, 2 > 0 v, 1 O
Z:::::::Z:::::: u~ o O o

~

~vi,~ ~ ~ ~ :

0 6 " • • : ~ • g ~ !LJ~. ;~ ~~
--r :z-z__-..z-._ ~~·:

00 0 ==--o ~
""tl l.lf~ ,, .. , ,

~ z:._.-~- ~ - ..c-=.~ -z-~"7.

& 0 0 0

0 .., -.;. 0 0 o
0 O O US S o

• 0

~ -- -
(: / 7 , / - - , ;, , , / ,, - _.___ - _,

r-r~'t

~ -,,- ., , , ,,, .z:--~ ~ -!H lt_""'l
t/ . -~ _ 1 ' ";;'·' :·::.;·"
d .-< < 7 < < e o o r, o_: .•: _"

-----e
/l

On U26 common pins 3, 8, 14 and 15.
On U27 common pins 3, 4, 5, 6 and 8.

• . .
: Vt<, :

- ~ .,,--
re,-,-·,·

Drill out PTH E and connect th e (ts) tr ack to U26 pin 1.
Isolate USS pin 10 and conn ect It to U26 pin 12.
Conn ect USS pin 11 to U26 pin 5.
Connect USS pin 13 to U26 pin 10.
Co nn ect USS pin 14 to U26 pin 4.
Connect U26 pin 2 to point F.
Connect U26 pin 13 to U27 pin 1-..

On U27 common pin s 16, 1 and 9.
Connect U27 pin 10 to U61 pin 15.
Connect U27 pin 2 to U30 pin 2.
Isolate U65 pin 1 and conn ect it to U26 pin 13. This track is accessible where it goes
through a PTH just above U59 (point K),
Connect U27 pin 7 to U30 pin 15.
Connect U60 pin 14 to U54 pin 6 and to point G.
Connect U41 pin 6 to point H.
Drill out PTH J and connect the (ts) track to U59 pin 13.

!If

I
,11

d
I
!1 ,,

11 I I .
!

;f

ii
,ii

i.l 11

1)

111

I

"''

Isolate U41 pins 6, 7, 8.
Connect (U41 pin 6) to U41 pin 7.
Connect (U41 pin 7) to U41 pin 8.

(This is a little unaesthetic but it saves a lot of soldering!)
Make up two composites each of two 2114 packages, soldering all pins together
except the respective pins 8.
Solder a 10cm length ol wire -wrap wire to the uppermost pin 8 of each composite,
and connect these to USS pin 12.
Insert the composites into U39 and U40 sockets, leaving only the uppermost pin 8 of
each composite unconnected to their respective socket-holes.
Insert a 74LS139 into U26 socket.
Insert a 74LS161/ 3 into U27 socket.

This completes the hardware modifications . All the usual admonishments to
observe device orientation, using a heat sink, wearing aluminium foil underwear
and chaining yourself to a water pipe whilst working have been left out, because if
you haven't evolved a neat and efficient way of working you shouldn't be doing
this! It is worth saying, however, that you should recheck your work, as even the
best of us make mistakes - hence the jam-jar-full of expensive but useless devices
in my workshop ...

Connect up to a TV and - assuming the TV has warmed up-flick the on/off switch
of the Superboard quickly . You should see a normal screen full of random
characters - though rather more than before, of course. If you don't get that
picture, you haven't been careful enough.

Check the video and user RAM again for speed failures and run a short screen test
program to make certain that you can obtain the maximum display format. When
you have gained enough confidence to leave everything on, the screen should be
displaying about 50 characters per line and 30 or so lines.

If 'BREAK' is pressed th e top half of the screen will clear and the normal D/ C/ W / M?
prompt will appear up and to the right of cen tr e. Althou gh somewh at co nfusing this
is perfectly correct, as th e original 1K vid eo RAM now co ntrol s th e top of the screen ,
while the additional section co ntrol s the low er half. Wh en th e normal ' return',
'return' sequence is entered as a response to th e co ld -start prompts the screen,
under the monitor's previou sly normal 32-column-per-line step, will show two
columns of alternate output:

MEM SIZE?
OK

D/ C/W/M?
TERMINAL WIDTH ?
?

In order to utilise the full screen width - and not go mad trying to understand just
what your severely confused Superboard is saying to you - some way of modifying
BASIC's handling of LIST and PRINT commands is required.

The routine that handles this in BASIC is stored at BF2D16 , which uses three
locations in the monitor ROM as a look-up table to find out which type of machine
it's in, and thus to determine where to put characters during output. The thrPe
locations used for this are:

FFE0 65 cursor rest position (cursor to start new line at D36516)

FFE1 17 characters / line - 1 (i .e. 2410 characters/line under normal routine)
FFE2 00 1K video RAM available (<> O: 2K video RAM available)
The neatest way round this is to burn a new monitor PROM copying the old ROM
except for these locations , changing them to the C2's values of 4016, 4816 and 01
respectively. This would not , however , solve the overscan problem - some
characters would be lost in the left -hand margin . The other but dirtier way of sorting
this is to use a software patch. The patch that follows is essentially a copy of the
BASIC routine at BF2D16 , but as a fr ee bonus gives a fast screen clear when executing
?CHR$(1) - which the BASIC routin e should have been able to do had it not had to
spend so much time trying to sort out whether it was driving a C1 or C2!

The patch is best placed in the 'safe' area of memory below the user RAM - from
022216 upwards . The patch is almost 200 bytes long - much too long for hand entry
every time via the monitor - so some form of machine load is essential. A BASIC
routine using POKEs would do the job; likewi se a machine-code tape, which would
also be faster - loading than BASIC.

The patch also has the advantage that , being in RAM , the cursor's starting
position, the line length and the like may all be user-specified , so as to allow for
varying degrees of overscan on your system. The Superboard screen handling
routine looks at locations 021A16 and 021B16 to pick up its output vector to FF69,6 for
the actual screen handling; this has to be changed to the start of the patch , at 0222,6 ,

in order for the patch to take over from the built-in routine. This vector is reset to
point at FF6916 after 'Break', and so must be reset to point to 0222, 6 after any pressing
of 'Break'. An easy way of doing this is via POKEs in direct mode: POKE 538, 34:
POKE 539, 02. But note that in direct mode these must be input in the same line -
otherwise BASIC will find itself looking for a screen routine at FF2216 ! If you load the
routine by means of a machine-code tape, placing .BD11G at the end of the tape will
send the system straight into BASIC's cold-start routine, obviating the need to reset
and Feload the patch start address in 021A, B.

The combination of the hardware modifications and this software patch will give a
video display of about 50 columns by 30 lines -12 t914 columns are lost in overscan,
and the top two lines are also lost off the top edge of th e screen.

0222
0225
0226
0227
0228
0229
022A
022D
022F
0232
0234
0236
0237
0239
023A
023C
023E

8D 02 02
48
BA
-+8
qa
48
AD 02 02
rn·4c
AC 06 02
F0 08
A2 40
CA
DO FD
88
DO F8
C9 0A
F0 46

STA 0202
PHA
TXA
PHA
TYA
PHA
LOA 0202
BEQ 4C
LOY 0206
BEQ 08
LDX 40
DEX
BNEFD
DEY
BNE F8
CMP 0A
BEQ 46

Copy of BF2D routine

A ll registers saved on stack
Retri eve A from parking space
Return if null
Start of delay routine :
pick s up delay loop counter from 518,0;

larger valu e gives longer delay

End of delay
Linefeed?
if yes, jump to 0286 for line-feed

t==================;:;;;;;;;;;;;;;;;;;;;;;;;;;,;;iliiiiiiiE!~==::.=========~~~~~~~~~::::::::::::~::::::::::~::~~~~::::::::::::~~~~~-e ..

,,........,.,...

02AC EE OC 02 INC {)20C
0240 C9 01 CMP 01 Screen clear? 02AF EC 09 02 CPX 0209 Down to D7nn yet?

' 0242 DO 1A BNE 1A if no, jump over screen clear routine • 02B2 DO F0 BNE F0 If not , go back for another 4-lin e 'page
0244 A9 20 LDA 20 Screen clear routine 02B4 20 07 02 JSR 0207
0246 AO 08 LDY 08 02B7 cc 02 02 CPY 0202 Do until nominal cursor start - see Note 2
0248 A2 00 LDX 00 02BA DO F8 BNE F8
024A 9D 00 DO STA DOO0, X 02BC A9 20 LDA 20 Clear text en tr y lin e
024D EB INX 02BE 20 0A 02 JSR 020A
024E DO FA BNEFA Load Dn00+X, 2016 until one 'page' is done 02C1 CE 08 02 DEC 0208
0250 EE 4C 02 IN C 024C Dn00 = D(n+1)00- restart one 'page' down 02C4 DO F8 BNE F8
0253 88 DEY 02C6 FO AE BEQ AE and jump back to exit-to-BASIC
0254 DO F4 BNE F4 Do until all eight 'pag es' of screen are done 02C8 AE 00 02 LOX 0200 0200 stores curr ent cur sor position l 11 0256 A9 DO LOA DO 02CB AD 01 02 LDA 0201 0201 stores character to be pr inted I I,
0258 80 4C 02 STA 024C Restore routine to start value - D000 02CE 9D 00 D7 STA 0700, X Place A on screen
025B 4C 7B 02)MP 027B and exit 02D1 60 RTS
025E C9 OD CMP0D Carriage return? 0202 2'.) CB 02 JSR 02C8 Place A on screen - see Note 3
0260 DO 06 BNE 06 if no , jump over carriage-return routine 0205 A9 CB LOA CB Carriage return - CB is cursor start - Note 4

~
0262 20 D2 02 JSR 02D2 Else do carriage-return 02D7 8D 00 02 STA 0200

11 0265 4C 7B 02)MP 027B and exit 02DA AE 00 02 LOX 0200 Enter her e to save next character on

, l~I 0268 8D 01 02 STA 0201 If A not above, save it at 0201 020D BD 00 D7 LOA D700, X Co uld be used fo r backspac e?
026B 20 CB 02 JSR 02C8 and print it 02E0 8D 01 02 STA 0201
026E EE 00 02 INC 0200 Increment cursor index 02E3 A9 SF LOA SF SF is cursor - jump back to print cur sor

11iil
0271 A9 F9 LDA F9 Maximum for cursor index (see Note 1) 02E5 DO E7 BNE E7 at next character loca tion on.
0273 CD 00 02 CMP 0200
0276 30 OB BMI OB Do CR/ LF if greater than maximum Note 1 f9 here is maximum permitted displacement of cu:sor_ before a car~iage-

II
0278 20 DA 02 JSR 02DA Else print cursor return is forced . The greatest possible displa cement is FF: this will vary according to
027B 68 PLA retrieve registers the amo unt of overscan on your system. [;
027C AB TAY

Note 2: -BF here is the end of th e lin e above the cu rsor lin e - it defin es the end of ,111: 027D 68 PLA
th e 'save and transfer ' part of th e scroll routine . BASIC's scroll routine is a ~ice 'I 027E AA TAX "
example of storing a constantly-changed routine in ROM , to be co llect~d each tame

,,

027F 68 PLA
a scroll is needed - have a look at the ROM listing, then see what this part of the 0280 4C 6C FF JMP FF6C and exit back to BASIC
print routine does with it.

0283 20 05 02 JSR 0205 Save neYt char . position - for backspace? e Note 3: There are four po ssibl e entry points here! 0202 replaces the cursor with
0286 20 cs 02 JSR 02C8 the previous blank space before doing th e carriage-return; 02D5 sets the cu rsor

I (0289 A9 BF LOA BF Nomina l cursor start - see Not e 2 start position (see Note 4); 02D7 cou l~ be us.ed for PRI_NT AT anywhere an the I 028B EA NOP bottom four l ines of the screen, by loading A with a new displacement. 02DA saves
028C EA NOP the current conte nts of D700+X which, since X has usually just been incremented,
028D 8D 02 02 STA 0202 is normally 2016 , a blank; but by changing X, via (0200), thi s co uld be used to fo rwa rd-
0290 A2 07 LOX 07 Pick up scroll routine from BFF3,6 space or backspace the cursor. 0292 8D FJ BF LDA Bff3, X

Note 4: CB here is the cursor start position, allowing for eight characters' overscan . 0295 9D 07 02 STA 0207, X and store at 020716 to 020E,6
l The maximum possib le, without overscan, is CO; change th is to suit your system. I 0298 CA DEX

;, I 0299 10 F7 BPL F7 .
[Editor : We have checked and rechecked thi s article as c~ref ull y as possible to

029B A2 D7 LOX D7 X defines the bottom of the main scroll ;
remove any error s; but obviou sly we canno t be held responsible for a~y d~ma~e to

029D A9 40 LOA 40 4016 here tells the routine to transfer the
your machine arising from errors that have managed to get through an this article .

029F 8D 08 02 STA 0208 char . 4016 'down' to the current Dnnn
The important point , obviously, is to work with care, on both the hardware a~d

02A2 AO 00 LDY 00 and do scroll e software sides of !his mod . If do~ e properly, it _conver ts a Superboard~~1 series
02A4 20 07 02 JSR 0207 machine from an interesting but limited gadget into a superb tool so at s worth
02A7 DO F8 BNE F8 doing well!]
02A9 EE 09 02 INC 0209 move down after first four lines done

""

,,

I,
,II

i
ii

111!,

""

Technical literature

We have at last located some technical literature on the smaller OSI systems,
published in the States by the Howard Sams group early this year, but with OSl's
name as ' publish er' on th e cover . There are two separate books, the C1 Technical
Guide and C4 Technical Guide - the latter for the new C4 machine which has not
as yet trickled its way across th e water , but which shares most of its boards with the
C2 used by many of our members . The books contain complete board schematics
for pretty well everything, including mini-floppy drivers, and sets of trouble
shooting guides that include full 'scope patterns. In many ways these should have
been included with the kit in the first place ... but no doubt OSI would argue that
these are for electronics buffs , not for the kind of ' home computer user' that they ' re
aiming for in the States. (If you want to see what kind of animal that is, see the
advertising blurb for the new C4 - it drives a full ' home security system' among
many others ...) The jacket pri ces are $7.95 for the C1 Guide , $15.95 for the C4
Guide; we don 't yet know of any dealer with them in stock, but we ' ll tell you as
soon as we do .

Dealer Notes

There seems little point in repeating the whole of the dealer list from last issue;
we'll include other dealers and their specialities in other issues as and when that
information comes in. We've had quite a lot of help from several OSI dealers, as
can be seen throughout the pages of this issue - thanks to you ail! We also have a
letter from Alan Caves of Cavern Electronics:

"Thank you for including us in your Dealer Notes (but note spelling of Wolverton!).
As you mentioned we are only selling C1s at present although any of the range can
be obtained to order . Some of the standard software should also be available
shortly - when we can get itl I am also engaged in writing some useful BASIC
routines, general purpose in natur e, such as a graph plotter. These will be available
in a month or so [from February '80 - Ed.]. I am also willing to market on a royalty
basis good programs from your readers.

Finally , as you know, th e main fault with the C1 is the poor display . Has anyone
come up with a mod . for increasing the numb er of character s per line? Also details
of how to add parallel port faciliti es would be useful. All of these could be sold on a
royalty basis.

If I can be of any help to you or your members please let me know."

Cavern Electronics are at 94 Stratford Road, Wolverton, Milton Keynes MK12 5LU.

One piece of information that would help all of us - OSI users and dealers - is
accurate statistics on the reliability of OSI equipment. It would be even more
useful to have these as wmparative statistics against the reliability of other system
ranges - dealers sellir,g equipment by a number of manufacturers please note!
The reason we ask is that in a recent issue of Personal Computer World one of the
reasons given by members of the Byte Shop chain for their financial difficulties was

-

-

ve ry poor service back-up by OSI. It seems likely that if dealers are not able to
provide accurate information to co unt er the obvious rumours that will start from
that comment - and the once all-too-accurate image , co urtesy of ADHOC , that
OSI kit was over-priced - OSI co mput ers are going to remain ve ry mu ch in the
second or third league as far as sales are co ncerned. Bad do cumentation do esn't
help either ... So dealer s, .it's over to you - we'll help all we can, but you have to

sup ply us with th e inf o rmati on before we can publish it!

User Group notes

User Group membership ,
Despite the fact that as yet (February '80) we've had no mention in the small
com puting press, our member ship is now qu ite a respectable size, and growing at
the rate of one or two new members a day. Part of this is due to help from Lotus
Sound and Mutek, both of whom included our application forms with their regular
mail- shots to former clients - thanks! After our initial worries about the financial
risk we were takin g - the production of the Newslet ter is going to cost at least
£1,000 for this year - the Group does look as though it is going to be viable in a
fin ancial sense. We are well on the way to that ' minimum memb ership for survival'
of two hundr ed, and it 's also more than likel y that there wi ll be eno ugh money left
ove r to finan ce a number of 'extras': more about those in a moment. For those
inte rested , our member ship at present is almost evenly divided between users of
C1/ Superboard and C2 systems, with a handful of C3s and also some UK101s. Man y
tha nks to those of you who did fill in the section on th e form about appl ications for
yo ur systems: this wi ll be useful to us late r.

Video planning charts
Steve Bridges wrote in to say that he was think ing of producing pads of video layout
sheets in the various formats for C1s and C2s, as shown in th e back of their manuals'
Gra phics Handbook . He reckon s the cost should be around £1.50 for a SO-sheet pad.
but the pri ce that he is able to get them printed for wi ll depend on th e print run,
which will depend on the number of people interested -so contact him .it 11 Sh,1w~
Road, Southport, Mer seyside PR8 4LR.

In the same vein, one of th e ideas we're working on is a range of seh of write-on/
wipe-off plannin g charts for the deve lopm ent stage of progrc1mming. Wr 'd bf'
including thing s like charts for var iabl es, for assembler lc1bl'ls .ind .iddrPsses.
memory allocations (memory-map and 256-byte pdge) , 6502 and l-80 opcode lists,
hex/ double -hex / binary /decima l converi,lon ch.irt-r.i lrn lato r .ind thP like, as well
as video charts in proper scree n ratio and in 32 x 64, 32-.. 32, 25-.. 25 and (for UK101
or, for that matter, Nascom users) 16 X 48 form.it s. Although they will have to be
glossy for the wipe -off to work, they can be photocopied by placing a sheet of matt
tracing paper over th e top . They ' ll be punched on both edges (so you can place
them face-to - face when working) , in both two -hole British format and three -hole
American to fit in your OSI manual. Anyone who 's used a planning chart of this kind
in business will know just how useful these would be in programming. We reckoned
on a retail price for a set of ten or so cards (including pen!) of around £5.00. so
members should be able to have them for around £3.50 or so. We should have them
ready in May or June, but don 't send any money until they are ready! We would like
to know if you're interested , though , so we can gauge the overall print run.

I
I

I

...

Documentation
A slightly longer-term plan is to get together enough information for an equivalent
of The PET Revealed for OSl's C1 and C2 series. If OSI can't do a decent job of
documenting their product s, we'd better do it for them! We're aiming to produce a
complete manual for the C1/ C2 series that actually does explain how the machines
work and what the y can (and can't) do, and which does explain how to use them to
their fullest extent. Their fullc~t extent, as we are discovering, is a very long way
indeed . The great advantage of these small machines (the C2 especially) is the
simplicity and cheapness of interfacing them to the outside world - for com
parison, look at the price of a single DI A converter or decent parallel interface for
the PET! But without adequate do cumentation these superb facilities can be merely
frustrating , worse than useless. So let us know what you are doing, what you have
found out. We want to get thi s in book form and into the bookshops and computer
stores in time for the User Group's first birthday in December '80, so get moving!
And there will , of course, be a special reduced price for members of the Group!

Hard copy service
Following enquiries by a number of members, we can now offer a hard-copy service
for material on Challenger-format tapes, either as listings or as output from a run.
The only practical way of costing is on a time basis, with a minimum charge of £2.50,
to cover our handling and postal costs. You ' ll get a printout of around 16K's-worth
of BASIC listing for that - rather less for assembler or machine-code - so for best
value put two or three programs on any tapes you send us. For obvious reasons,
don 't send us your master tape or your only copy of a program! The tape will, of
course , be returned with the printout. Turnround should be less than a week door
to-door. Contact Tom Graves for more details, at 19a West End, Street , Somerset
BA 16 OLQ; telephone Street (0458) 45359.

Printers
Along the same lines , here's our first hardware offer to members , worth about thirty

. times your annual subscription! One OSI dealer - who shall, for the moment,
remain nameless for obvious commercial reasons - has offered to import for us a
number of Base-2 printers at a price way below the going rate. The Base-2 is a fairly
typical medium-speed matrix printer which is just coming onto the UK market at
around £450-£500. It's typical in that it's fairly small, reasonably quiet, and uses plain
paper. It's' not unusual in having both friction and tractor feed as standard, the
tractors being adjustable to take up to 81 i" paper. But it is unusual in having four
interfaces built-in as standard, with two complete character sets in ROM, optio ,ns on
two more, and room for a further user-programmed set in RAM as standard. Most of
its format functions are software-controlled as well. The version we ' re after will have
that all-important£ sign in the character set, and should have the entire Challenger
graphics in the ROM as well. All this for £325! - plus the dreaded 15'½, ... The dealer
says he would prefer an order for at least five printers between us to make it worth
his while: so if you've been thinking about buying a printer, contact Tom Graves as
soon as possible.

. Copy ri ght 1980 OSI UK User Group, unle ss otherwise stated

~

,,
'

